Visual SLAM for Autonomous Hull Inspection

Ryan Eustice
Perceptual Robotics Laboratory (PeRL)
University of Michigan
Acknowledgements

Collaborators

- **MIT**: Franz Hover, Brendan Englot, Hordur Johannsson, Michael Kaess, John Leonard
- **Bluefin Robotics**: Jerome Vaganay
- **SeaByte**: Jose Vazquez, Scott Reed
- **FAU**: Pierre-Philippe Beaujean

Funding

- **ONR POC**: Dr. Thomas Swean
 Office of Naval Research
- **Technical POC**: Ms. Victoria Steward
 NAVEODTECHDIV
Why Underwater Inspection?

- Safety and security purposes
- No other easy way to inspect large ships

Courtesy of Seaward Marine
Autonomous Underwater Inspection

- **Challenges to localization**
 - No GPS underwater
 - Long Base Line (LBL) difficult to use in harbors
 - Metal ship hulls => Magnetic compass
 - Complex environment to navigate

- **Proposed solution**
 - In-situ navigation using SLAM:
 - Vision (Eustice, Kim)
 - Imaging sonar (Johannsson, Kaess, Leonard)
 - Path-planning for 100% coverage (Hover, Englot)

- **Benefits**
 - Ensure full coverage
 - Avoid hazards and restricted areas
 - Re-acquire targets / Change detection
 - No additional infrastructure required
Hovering Autonomous Underwater Vehicle (HAUV)

- Equipped with
 - 8 Thrusters (full 6-DOF)
 - Ring laser gyro
 - Sonars:
 - Doppler Velocity Log (DVL)
 - Multi-beam imaging sonar (DIDSON)
 - Both sonars are actuated
 - Camera + light strobe

Ship hull inspection by hull-relative navigation and control, OCEANS 2005
Planning Complex Inspection Tasks Using Redundant Roadmaps

Brendan Englot and Franz Hover
Department of Mechanical Engineering, MIT, USA
Inspecting the “Complex Areas” of a Ship

- At the stern of a ship, protruding structures make 100% sensor coverage difficult to achieve.

- These structures require the use of DIDSON in profiling mode, giving 30° range scans rather than 2D images.

- 3D mesh models are built by scanning the ship in low-resolution, long-range viewing mode (10m range).

- Model is used for planning an inspection in high-resolution, short-range viewing mode (5m range), suitable for detecting mines.

Top: Views of USCGC Seneca propeller, using DIDSON. Bottom: 3D Mesh constructed from full sonar dataset.
Our Planning Method: sample robot configurations and record their observations.

Ensure that every geometric primitive in the mesh is observed at least \(n \) times.

Use this redundant roadmap as the state space from which an inspection path is designed, using the iterative procedure detailed below:
Sampling-Based HAUUV Inspection Paths

The Redundant Roadmap method quickly computes a feasible inspection path, a suitable starting point for an improvement procedure.

Inspection Path for 100% Coverage of SS Curtiss, designed in less than two minutes by constructing a roadmap of redundancy 10.

Shortened tour after several hours of sampling-based improvement
Autonomous Ship Hull Inspection – Real-Time 6-DOF SLAM

red: camera footprint
blue: sonar footprint
Final SLAM Result (100% Camera Coverage Survey)
Sonar and Camera Derived Constraints
SLAM vs. Dead-Reckoned Navigation
Tested with a Variety of Hulls

2008 – USS Saratoga (324 m)

2010 – R/V Oceanus (54 m)

2010 – USCGC Venturous (64 m)

2011 – M/V Terry Bordelon (46 m)

2011 – USCGC Seneca (82 m)

2011 – SS Curtiss (183 m)
Intuition behind visual SLAM

- Odometry only (DVL dead-reckoned)

- Vision system

Nonsequential constraint
- camera

Sequential constraint
- odometry
Sonar Constraints – Processing

(a) Initial sonar image

(b) Smoothed

(c) Gradient

(d) Threshold

(e) Clustering

(f) Extracted Features

Initial → Smoothing → Gradient → Threshold → Clustering → Final
Sonar Constraints – Registration

• Registration – NDT (Normal Distribution Transform, Biber 2004)
 – Compact representation
 – Loose correspondences

• When to accept a registration?
 – Conservative threshold to avoid wrong matches

Frame A B registered in A Frame B
State Estimation

- We optimize over the full trajectory (smoothing!)

Camera or Sonar

Pose graph including loops

- Incremental smoothing and mapping (iSAM) for efficient solution and access to covariances
 (open source at http://people.csail.mit.edu/kaess/isam)

"iSAM: Incremental Smoothing and Mapping" by M. Kaess, A. Ranganathan, and F. Dellaert,
IEEE Trans. on Robotics, TRO, vol. 24, no. 6, Dec. 2008, pp. 1365-1378,
Visual SLAM on a Clean Hull

- R/V Oceanus, Woods Hole Oceanographic Institution
- Jan 2010
Visual SLAM Results for R/V Oceanus

- **Search survey**
 - (4) legs, each 20 m in length
 - 425 images @ 1 fps
 - 185 cross-track matches

- Uncertainty increases monotonically (DR)
- Uncertainty is bounded (VAN)
Example Along-Track Registration (Strong Prior)
Example Cross-Track Registration (Strong Prior)
Example Cross-Track Registration (Weak Prior)
Image Saliency for Active SLAM

- Not all images are equal for SLAM
- Adapt vehicle trajectory based upon localization error and image saliency
Visual Saliency using Bag-of-words

Ayoung Kim
Bag of Words Visual Saliency for Active SLAM
Saliency Definition
Saliency Definition

- Local saliency
 - Single image
 - Color/Grayscale
 - Texture richness / Registrability

- Global saliency
 - Image stream
 - Color/Grayscale
 - Rarity
Bag of Words (BoW) Vocabulary Representation

- Vocabulary should be representative
 - Build vocab. online.
 - Start from zero vocab.

- Independence between input images
 - Update vocab. when robot has enough spatial separation

- Related Work

Saliency Definition

- Local Saliency
 - Entropy
 - Histogram of BoW
 \[e = - \sum_{i=1}^{\mid w \mid} p(w_i) \log_2 p(w_i) \]
 \((\mid w \mid = \text{size of vocabulary}) \)
 - Normalization is needed
 \[S_L = \frac{\sum_i p(w_i) \log_2 p(w_i)}{\log_2 \mid w \mid} \]

- Global Saliency
 - Information
 - Statistics of BoW (idf)
 \[s_i(t) = \sum_{w=1}^{n_d} \log_2 \frac{N(t)}{n_w(t)} \]
 \((n_d = \text{Total number of images}) \)
 - Normalization is needed
 \[S_{G,i}(t) = \frac{\sum_{w=1}^{n_d} \log_2 N(t)/n_w(t)}{\max_j s_j(t)} \]
 \((N = \text{Total number of images}) \)
Saliency Evaluation
Evaluation - Local Saliency BoW Measure

- Normalized entropy score over image vocab distribution
- Compares well to a Hue derived entropy measure, but has the advantage of working equally well with grayscale

Johnson-Roberson, M. Large-Scale Multi-sensor 3D Reconstructions and Visualizations of Unstructured Underwater Environments The University of Sydney, 2010

Evaluation - Global Saliency BoW Measure

- Normalized cumulative inverse document frequency (idf)
- Discriminates based upon temporal occurrence

More salient

(a) $S_G=0.78 / S_L=0.81$
(b) $S_G=0.74 / S_L=0.77$
(c) $S_G=0.72 / S_L=0.78$
(d) $S_G=0.47 / S_L=0.74$
(e) $S_G=0.46 / S_L=0.65$

Less salient

(f) $S_G=0.66 / S_L=0.73$
(g) $S_G=0.65 / S_L=0.76$
(h) $S_G=0.61 / S_L=0.73$
(i) $S_G=0.49 / S_L=0.61$
(j) $S_G=0.47 / S_L=0.68$
Evaluation - Global Saliency

- Normalized cumulative inverse document frequency (idf)
- Discriminates based upon temporal occurrence

More salient

(a) $S_G=0.78 / S_L=0.81$
(b) $S_G=0.74 / S_L=0.77$
(c) $S_G=0.72 / S_L=0.75$

(f) $S_G=0.66 / S_L=0.73$
(g) $S_G=0.65 / S_L=0.76$
(h)
Hull Saliency Maps

(c) Local / global saliency map on USCGC Venturous.

(d) Local saliency map on SS Curtiss.
Saliency Incorporated
Information Gain
Geometric Information Gain

- Geometrical information gain (Ila, 2010)
 - EIF (Extended Information Filter) \(\eta = \Lambda \mu \) and \(\Lambda = \Sigma^{-1} \)
 - Mutual information defined from entropy
 \[
 I_g = \sum_{x \in X, z_i \in Z} p(x, z_i) \log \frac{p(x, z_i)}{p(x)p(z_i)}
 \]
 \[
 = H(X) + H(Z) - H(X, Z)
 \]
 \[
 = H(X) - H(X|Z),
 \]
 \[
 = \frac{1}{2} \ln \frac{|\Lambda + \Delta \Lambda|}{|\Lambda|} \quad \Delta \Lambda = H^T \Sigma_y^{-1} H
 \]
 - Expected information gain by making a measurement

Information-Based Compact Pose SLAM, IEEE Trans. Robotics, 2010
V. Ila, J. Porta, J. Andrade-Cetto
Information Gain *with* Local Saliency

- **Local saliency**
 - Build map efficiently.
 - Remove unlike candidates.

43.7% removed by imposing 0.6 local saliency thresh.
Future Work

- Incorporating visual saliency with control for active SLAM
- Multi-modality registration in complex areas
- Re-localization and managing large maps
- Robust handling of correspondence errors